
April 27, 2017

Performance with Open|SpeedShop

Jim Galarowicz: Argo Navis, Krell Institute

Greg Schultz, Argo Navis
Don Maghrak, Krell Institute

William Hachfeld, Argo Navis, Krell Institute

NASA Open|SpeedShop Update/Training

National Aeronautics and Space Administration

www.nasa.gov

Webinar Preparation Underway

If you cannot hear meeting room activity on your computer:

1. Be sure your computer audio volume is high enough to hear

2. If there’s still a problem, use the “Chat Box” facility of Webex to
request a telephone callback. (The Chat box is reachable from the
green tab at the top of your screen.)

April 27, 2017

Instructions for Participants

How to hear the audio (in order of preference):
1. Use your computer audio to follow the training

• This should work with Windows and Mac, but maybe not with Linux
2. Dial 650-479-3208

Participants not in the meeting room at NAS have been muted
 This should reduce cross-talk and provide everyone with better audio

Questions are welcome during the presentation:
 Ask a question in the Chat facility

• The host will be monitoring and will relay your question to the speaker
 If the question is too complicated to ask in text, call 650-479-3208 and ask

the host to unmute you in order for you to communicate by phone.

3

April 27, 2017

 Jim Galarowicz, Argo Navis, Krell Institute

 Greg Schultz, Argo Navis

 Don Maghrak, Krell Institute

 William Hachfeld, Argo Navis, Krell Institute

Open|SpeedShop extended team:

 Patrick Romero: Krell Institute

 Jennifer Green, David Montoya, Mike Mason, David Shrader: LANL

 Martin Schulz, Matt Legendre and Chris Chambreau: LLNL

 Mahesh Rajan, Doug Pase, Anthony Agelastos: SNL

 Dyninst group (Bart Miller: UW & Jeff Hollingsworth: UMD)

 Phil Roth, Mike Brim: ORNL

 Ciera Jaspan: CMU

Performance Analysis with Open|SpeedShop 4

Presenters and Extended Team

April 27, 2017

Outline

Section 1: Introduction to Open|SpeedShop tools
 How to use Open|SpeedShop to gather and display
 Overview of performance experiments

• Sampling Experiments and Tracing Experiments

 How to compare performance data for different application runs

Section 2: New Functionality/Experiments
 Memory (ossmem) experiment
 OpenMP augmentation and OMPTP (ossomptp) experiment
 POSIX threads (osspthreads) experiment
 Lightweight experiments (ossiop, ossmpip)
 NVIDIA CUDA tracing experiment (osscuda)

Section 3: Roadmap / Future Plans

Supplemental Information
 Command Line Interface (CLI) tutorial and examples

5 Performance Analysis with Open|SpeedShop

April 27, 2017

NASA Open|SpeedShop Availability
Pleaides platform:

 module use /home4/jgalarow/privatemodules

 Module names:
 module load openspeedshop (defaults to mpt)
 module load openspeedshop.mpt
 module load openspeedshop.intelmpi
 module load openspeedshop.mvapich2
 module load openspeedshop.openmpi

KNL cluster platform:

 module use /u/jgalarow/privatemodules

 Module names:
 module load openspeedshop (defaults to mpt)
 module load openspeedshop.mpt
 module load openspeedshop.intelmpi

For mpi* experiments use the module file that corresponds
to the MPI implementation your application was built with.

Performance Analysis with Open|SpeedShop 6

April 27, 2017

Performance with Open|SpeedShop

Section 1
Introduction into Tools and Open|SpeedShop

NASA Open|SpeedShop
Update/Training

April 27, 2017

Open|SpeedShop Tool Set

 Open Source Performance Analysis Tool Framework
 Most common performance analysis steps all in one tool
 Combines tracing and sampling techniques
 No need to recompile the application being monitored.
 Gathers and displays several types of performance information
 Maps performance data information to application source code

 Flexible and Easy to use
 User access through:

GUI, Command Line, Python Scripting, convenience scripts

 Scalable Data Collection
 Instrumentation of unmodified application binaries
 New option for hierarchical online data aggregation

 Supports a wide range of systems
 Extensively used and tested on a variety of Linux clusters
 Cray, Blue Gene, ARM, Intel MIC, GPU support

Performance Analysis with Open|SpeedShop 8

April 27, 2017

mpiexec_mpt -np 4 smg2000 –n 65 65 65 osspcsamp “mpiexec_mpt –np 4 smg2000 –n 65 65 65”

http://www.openspeedshop.org/

Open|SpeedShop Workflow - default
 mpiexec_mpt –np 4 smg2000 –n 65 65 65

April 27, 2017

mpiexec_mpt –np 4 smg2000 –n 65 65 65 osspcsamp --offline “mpiexec_mpt –np 4 smg2000 –n 65 65 65” MPI Application

Post-mortem O|SS

http://www.openspeedshop.org/

Open|SpeedShop Workflow – optional
 mpiexec_mpt –np 4 smg2000 –n 65 65 65

April 27, 2017

Experiment Commands

 expView

 expCompare

 expStatus

List Commands

 list –v exp

 list –v hosts

 list –v src

Session Commands

 openGui

Alternative Interfaces

 Scripting language
 Immediate command interface
 O|SS interactive command line (CLI)

• openss -cli

 Python module

Performance Analysis with Open|SpeedShop 11

import openss

my_filename=openss.FileList("myprog.a.out")

my_exptype=openss.ExpTypeList("pcsamp")

my_id=openss.expCreate(my_filename,my_exptype)

openss.expGo()

My_metric_list = openss.MetricList("exclusive")

my_viewtype = openss.ViewTypeList("pcsamp”)

result = openss.expView(my_id,my_viewtype,my_metric_list)

April 27, 2017

Central Concept: Experiments

 Users pick experiments:
 What to measure and from which sources?
 How to select, view, and analyze the resulting data?

 Two main classes:
 Statistical Sampling

• Periodically interrupt execution and record location
• Useful to get an overview
• Low and uniform overhead

 Event Tracing
• Gather and store individual application events
• Provides detailed per event information
• Can lead to huge data volumes

 O|SS can be extended with additional experiments

April 27, 2017

Sampling Experiments in O|SS

 PC Sampling (pcsamp)
 Record PC repeatedly at user defined time interval
 Low overhead overview of time distribution
 Good first step, lightweight overview

 Call Path Profiling (usertime)
 PC Sampling and Call stacks for each sample
 Provides inclusive and exclusive timing data
 Use to find hot call paths, whom is calling who

 Hardware Counters (hwc, hwctime, hwcsamp)
 Provides profile of hardware counter events like cache & TLB misses
 hwcsamp:

• Periodically sample to capture profile of the code against the chosen counter
• Default events are PAPI_TOT_INS and PAPI_TOT_CYC

 hwc, hwctime:
• Sample a hardware counter till a certain number of events (called threshold) is

recorded and get Call Stack
• Default event is PAPI_TOT_CYC overflows

Performance Analysis with Open|SpeedShop 13

April 27, 2017

Tracing Experiments in O|SS

 Input/Output Tracing (io, iot, iop)
 Record invocation of all POSIX I/O events
 Provides aggregate and individual timings
 Store function arguments and return code for each call (iot)
 Lightweight I/O profiling because not tracking individual call

details (iop)

 MPI Tracing (mpi, mpit, mpip)
 Record invocation of all MPI routines
 Provides aggregate and individual timings
 Store function arguments and return code for each call (mpit)
 Lightweight MPI profiling because not tracking individual call

details (mpip)

 Memory Tracing (mem)
 Record invocation of key memory related function call events
 Provides aggregate and individual rank, thread, or process

timings

Performance Analysis with Open|SpeedShop 14

April 27, 2017

Tracing Experiments in O|SS

 CUDA NVIDIA GPU Event Tracing (cuda)
 Record CUDA events, provides timeline and event timings
 Traces all NVIDIA CUDA kernel executions and the data

transfers between main memory and the GPU.
 Records the call sites, time spent, and data transfer sizes.

 POSIX thread tracing (pthreads)
 Record invocation of all POSIX thread events
 Provides aggregate and individual rank, thread, or process

timings

 OpenMP specific profiling/tracing (omptp)
 Report task idle, barrier, and barrier wait times per OpenMP

thread and attribute those times to the OpenMP parallel
regions.

Performance Analysis with Open|SpeedShop 15

April 27, 2017

How to Run a First Experiment in O|SS?

1. Picking the experiment
 What do I want to measure?
 We will start with pcsamp to get a first overview

2. Launching the application
 How do I control my application under O|SS?
 Enclose how you normally run your application in quotes
 osspcsamp “mpirun –np 4 smg2000 –n 65 65 65”

3. Storing the results
 O|SS will create a database
 Name: smg2000-pcsamp.openss

4. Exploring the gathered data
 How do I interpret the data?
 O|SS will print a default report (offline version only)

 Open the GUI to analyze data in detail (run: “openss”)

 Performance Analysis with Open|SpeedShop 16

April 27, 2017

Example Run with Output (1 of 2)

 osspcsamp “mpirun –np 4 smg2000 –n 65 65 65”

Performance Analysis with Open|SpeedShop 17

Bash> osspcsamp "mpirun -np 4 ./smg2000 -n 65 65 65"
[openss]: pcsamp experiment using the pcsamp experiment default sampling rate: "100".
[openss]: Using OPENSS_PREFIX installed in /opt/ossoffv2.1u4
[openss]: Setting up offline raw data directory in /opt/shared/offline-oss
[openss]: Running offline pcsamp experiment using the command:
"mpirun -np 4 /opt/ossoffv2.1u4/bin/ossrun "./smg2000 -n 65 65 65" pcsamp"

Running with these driver parameters:
 (nx, ny, nz) = (65, 65, 65)
 …
 <SMG native output>
…
Final Relative Residual Norm = 1.774415e-07
[openss]: Converting raw data from /opt/shared/offline-oss into temp file X.0.openss

Processing raw data for smg2000
Processing processes and threads ...
Processing performance data ...
Processing functions and statements ...
Resolving symbols for /home/jeg/DEMOS/workshop_demos/mpi/smg2000/test/smg2000

April 27, 2017

Example Run with Output (2 of 2)

 osspcsamp “mpirun –np 4 smg2000 –n 65 65 65”

Performance Analysis with Open|SpeedShop 18

[openss]: Restoring and displaying default view for:
 /home/jeg/DEMOS/workshop_demos/mpi/smg2000/test/smg2000-pcsamp.openss
[openss]: The restored experiment identifier is: -x 1

 Exclusive CPU time % of CPU Time Function (defining location)
 in seconds.
 7.870000 43.265531 hypre_SMGResidual (smg2000: smg_residual.c,152)
 4.390000 24.134140 hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)
 1.090000 5.992303 mca_btl_vader_check_fboxes (libmpi.so.1.4.0: btl_vader_fbox.h,108)
 0.510000 2.803738 unpack_predefined_data (libopen-pal.so.6.1.1: opal_datatype_unpack.h,41)
 0.380000 2.089060 hypre_SemiInterp (smg2000: semi_interp.c,126)
 0.360000 1.979109 hypre_SemiRestrict (smg2000: semi_restrict.c,125)
 0.350000 1.924134 __memcpy_ssse3_back (libc-2.17.so)
 0.310000 1.704233 pack_predefined_data (libopen-pal.so.6.1.1: opal_datatype_pack.h,38)
 0.210000 1.154480 hypre_SMGAxpy (smg2000: smg_axpy.c,27)
 0.140000 0.769654 hypre_StructAxpy (smg2000: struct_axpy.c,25)
 0.110000 0.604728 hypre_SMGSetStructVectorConstantValues (smg2000: smg.c,379)

 View with GUI: openss –f smg2000-pcsamp.openss

April 27, 2017

Default Output Report View

Performance Analysis with Open|SpeedShop 19

Performance Data
Default view: by Function

(Data is sum from all
processes and threads)

Select “Functions”, click D-icon

Toolbar to switch
Views

Graphical
Representation

April 27, 2017

Statement Report Output View

Performance Analysis with Open|SpeedShop 20

Performance Data

View Choice: Statements
Select “statements, click D-icon

Statement in Program that
took the most time

April 27, 2017

Associate Source & Performance Data

Performance Analysis with Open|SpeedShop 21

Double click to open
source window

Use window controls to
split/arrange windows

Selected performance
data point

April 27, 2017

Library (LinkedObject) View

Performance Analysis with Open|SpeedShop 22

Libraries in the application

Select LinkedObject
View type and Click

on D-icon

Shows time spent in
libraries. Can indicate

imbalance.

April 27, 2017

Loop View

Performance Analysis with Open|SpeedShop 23

Statement number of start
of loop.

Select Loops
View type and Click

on D-icon

Shows time spent in loops.

April 27, 2017

First Experiment Run: Summary

Performance Analysis with Open|SpeedShop 24

 Place the way you run your application normally in quotes
and pass it as an argument to osspcsamp, or any of the other
experiment convenience scripts: ossio, ossmpi, etc.
 osspcsamp “mpiexec_mpt –np 64 ./mpi_application app_args”

 Open|SpeedShop sends a summary profile to stdout

 Open|SpeedShop creates a database file

 Display alternative views of the data with the GUI via:
 openss –f <database file>

 Display alternative views of the data with the CLI via:
 openss –cli –f <database file>

 On clusters, need to set OPENSS_RAWDATA_DIR
 Only for the --offline mode of operation – not needed for default
 Should point to a directory in a shared file system
 Usually set/handled in a module or dotkit file.

 Start with pcsamp for overview of performance

 Then, focus on performance issues with other experiments

April 27, 2017

Identifying Critical Regions

Flat Profile Overview

 Profiles show computationally intensive code regions
 First views: Time spent per functions or per statements

 Questions:
 Are those functions/statements expected?
 Do they match the computational kernels?
 Any runtime functions taking a lot of time?

 Identify bottleneck components
 View the profile aggregated by shared objects (LinkedObject

view)
 Correct/expected modules?
 Impact of support and runtime libraries

25 Performance Analysis with Open|SpeedShop

April 27, 2017

Performance with Open|SpeedShop

Call Path Profiling (usertime)

NASA Open|SpeedShop
Update/Training

April 27, 2017

Call stack profiling

 Call Stack Profiling
 Take a sample: address inside a function
 Call stack: series of program counter addresses (PCs)
 Unwinding the stack is walking through those addresses and

recording that information for symbol resolution later.
 Leaf function is at the end of the call stack list

 Open|SpeedShop: experiment called usertime
 Time spent inside a routine vs. its children
 Time spent along call paths in the application
 Key view: butterfly

27 Performance Analysis with Open|SpeedShop

April 27, 2017

Adding Context through Stack Traces

Function

A

28 Performance Analysis with Open|SpeedShop

Function

B

Function

C

Function

D

Function

E

 Missing information in flat
profiles
 Distinguish routines called from

multiple callers
 Understand the call invocation

history
 Context for performance data

 Critical technique: Stack traces
 Gather stack trace for each

performance sample
 Aggregate only samples with

equal trace

 User perspective:
 Butterfly views

 (caller/callee relationships)
 Hot call paths

• Paths through application that
take most time

April 27, 2017

Inclusive vs. Exclusive Timing

Function

A

29 Performance Analysis with Open|SpeedShop

Function

B

Function

C

Function

D

Function

E

 Stack traces enable
calculation of
inclusive/exclusive times
 Time spent inside a function

only (exclusive)
• See: Function B

 Time spent inside a function and
its children (inclusive)
• See Function C and children

 Implementation similar to flat
profiles
 Sample PC information
 Additionally collect call stack

information at every sample

 Tradeoffs
 Pro: Obtain additional context

information
 Con: Higher overhead/lower

sampling rate

Inclusive Time for C

Exclusive Time for B

April 27, 2017

Interpreting Call Context Data

 Inclusive versus exclusive times
 If similar: child executions are insignificant

• May not be useful to profile below this layer
 If inclusive time significantly greater than exclusive time:

• Focus attention to the execution times of the children

 Hotpath analysis
 Which paths takes the most time?
 Path time might be ok & expected, but could point to a problem

 Butterfly analysis (similar to gprof)
 Could be done on “suspicious” functions

• Functions with large execution time
• Functions with large difference between implicit and explicit time
• Functions of interest
• Functions that “take unexpectedly long”
• …

 Shows split of time in callees and callers

Performance Analysis with Open|SpeedShop 30

April 27, 2017

In/Exclusive Time in O|SS: Usertime

Basic syntax:

ossusertime “how you run your executable normally”

Examples:

ossusertime “smg2000 –n 50 50 50”

ossusertime “smg2000 –n 50 50 50” low

 Parameters
Sampling frequency (samples per second)
Alternative parameter: high (70) | low (18) | default (35)

Recommendation: compile code with –g to get statements!

Performance Analysis with Open|SpeedShop 31

April 27, 2017

Reading Inclusive/Exclusive Timings

 Default View
 Similar to pcsamp view from first example
 Calculates inclusive versus exclusive times

Performance Analysis with Open|SpeedShop 32

Exclusive Time Inclusive Time

April 27, 2017

Stack Trace Views: Hot Call Path

Performance Analysis with Open|SpeedShop 33

Access to call paths:
• All call paths (C+)
• All call paths for

selected function (C)

Hot Call Path

April 27, 2017

Stack Trace Views: Butterfly View

 Similar to well known “gprof” tool

Performance Analysis with Open|SpeedShop 34

Pivot routine
“hypre_SMGSolve”

Callers of
“hypre_SMGSolve”

Callees of
“hypre_SMGSolve”

April 27, 2017

Demonstration: Call path profiling

Usertime experiment related application exercise

Call path profiling exercises can be found in these
directories:
 $HOME/exercises/seq_smg2000
 $HOME/exercises/smg2000
 $HOME/exercises/lulesh2.0.3

35 Performance Analysis with Open|SpeedShop

April 27, 2017

Performance with Open|SpeedShop

Performance Analysis related to accessing
Hardware Counter Information

NASA Open|SpeedShop
Update/Training

April 27, 2017

Identify architectural impact on code inefficiencies

 Timing information shows where you spend your time
 Hot functions / statements / libraries
 Hot call paths

 BUT: It doesn’t show you why
 Are the computationally intensive parts efficient?
 Are the processor architectural components working optimally?

 Answer can be very platform dependent
 Bottlenecks may differ
 Cause of missing performance portability
 Need to tune to architectural parameters

 Next: Investigate hardware/application interaction
 Efficient use of hardware resources or Micro-architectural

tuning
 Architectural units (on/off chip) that are stressed

 37 Performance Analysis with Open|SpeedShop

April 27, 2017

The O|SS HWC Experiments

 Provides access to hardware counters
 Implemented on top of PAPI
 Access to PAPI and native counters
 Examples: cache misses, TLB misses, bus accesses

 Basic model 1: Timer Based Sampling: hwcsamp
 Samples at set sampling rate for the chosen events
 Supports multiple counters
 Lower statistical accuracy
 Can be used to estimate good threshold for hwc/hwctime

 Basic model 2: Thresholding: hwc and hwctime
 User selects one counter
 Run until a fixed number of events have been reached
 Take PC sample at that location

• hwctime also records stacktrace

 Reset number of events
 Ideal number of events (threshold) depends on application

 Performance Analysis with Open|SpeedShop 38

April 27, 2017

Recommend start with hwcsamp

 osshwcsamp “<command>< args>” [default |<PAPI_event_list>|<sampling_rate>]

 Sequential job example:
osshwcsamp “smg2000”

 Parallel job example:
osshwcsamp “mpirun –np 128 smg2000 –n 50 50 50” PAPI_L1_DCM,PAPI_L1_TCA 50

 Default events: PAPI_TOT_CYC and PAPI_TOT_INS
 Default sampling_rate: 100
 <PAPI_event_list>: Comma separated PAPI event list (Maximum

of 6 events that can be combined)
 <sampling_rate>:Integer value sampling rate

 Use event count values to guide selection of thresholds for
hwc, hwctime experiments for deeper analysis

Note: Counts in hwcsamp are the counts for all code executed in the sample period and
therefore some counters may not have affected the count at the sampled point. (fp ops
counts at some obvious function or statement that does not have fp instructions)

Performance Analysis with Open|SpeedShop 39

April 27, 2017

Selecting the Counters & Sampling Rate

 For osshwcsamp, Open|SpeedShop supports …
 Derived and Non derived PAPI presets

• All derived and non derived events reported by “papi_avail”
• Ability to sample up to six (6) counters at one time; before use test with

– papi_event_chooser PRESET <list of events>

• If a counter does not appear in the output, there may be a conflict in the
hardware counters

 All native events
• Architecture specific (incl. naming)
• Names listed in the PAPI documentation
• Native events reported by “papi_native_avail”

 Sampling rate depends on application
 Overhead vs. Accuracy

• Lower sampling rate cause less samples

Performance Analysis with Open|SpeedShop 40

April 27, 2017

hwcsamp with miniFE (see mantevo.org)
 osshwcsamp “mpiexec –n 72 miniFE.X –nx 614 –ny 614 –nz 614” PAPI_DP_OPS,PAPI_L1_DCM,PAPI_TOT_CYC,PAPI_TOT_INS

 openss –f miniFE.x-hwcsamp.openss

42

Also have pcsamp
information

Up to six event can be
displayed. Here we have 4.

Performance Analysis with Open|SpeedShop

April 27, 2017

Deeper Analysis with hwc and hwctime

 osshwc[time] “<command> < args>” [default | <PAPI_event> |
<PAPI threshold> | <PAPI_event><PAPI threshold>]
 Sequential job example:

• osshwc[time] “smg2000 –n 50 50 50” PAPI_FP_OPS 50000
 Parallel job example:

• osshwc[time] “mpirun –np 128 smg2000 –n 50 50 50”

 default: event (PAPI_TOT_CYC), threshold (10000)

 <PAPI_event>: PAPI event name

 <PAPI threshold>: PAPI integer threshold

 NOTE: If the output is empty, try lowering the
<threshold> value. There may not have been enough PAPI
or native event occurrences to record and present

Performance Analysis with Open|SpeedShop 43

April 27, 2017

Examples of Typical Counters

Note: Threshold indications are just rough guidance and depend on the application.

Note: Counters platform dependent (use papi_avail & papi_native_avail)

Note: The best way to choose a threshold for events is to observe the summary in hwcsamp
for a counter and choose a value based on some small percentage of that.

Performance Analysis with Open|SpeedShop 44

PAPI Name Description Threshold

PAPI_L1_DCM L1 data cache misses high

PAPI_L2_DCM L2 data cache misses high/medium

PAPI_L1_DCA L1 data cache accesses high

PAPI_FPU_IDL Cycles in which FPUs are idle high/medium

PAPI_STL_ICY Cycles with no instruction issue high/medium

PAPI_BR_MSP Miss-predicted branches medium/low

PAPI_FP_INS Number of floating point instructions high

PAPI_LD_INS Number of load instructions high

PAPI_VEC_INS Number of vector/SIMD instructions high/medium

PAPI_HW_INT Number of hardware interrupts low

PAPI_TLB_TL Number of TLB misses low

April 27, 2017

Viewing hwc Data

 hwc default view: Counter = Total Cycles

Performance Analysis with Open|SpeedShop 45

Flat hardware counter profile
of a single hardware counter

event.
Exclusive counts only

April 27, 2017

Viewing hwctime Data

hwctime default view: Counter = L1 Cache Misses

Performance Analysis with Open|SpeedShop 46

Calling context hardware
counter profile of a single
hardware counter event.

Exclusive/Inclusive counts

April 27, 2017

Performance with Open|SpeedShop

Performance Analysis related to
application I/O activity

NASA Open|SpeedShop
Update/Training

April 27, 2017

 I/O analysis with O|SS

 I/O Tracing (io experiment)
 Records each event in chronological order
 Provides call path and time spent in I/O functions

 I/O Profiling (iop experiment)
 Lighter weight I/O tracking experiment
 Trace I/O functions but only record individual callpaths not

each individual event with callpath (Like usertime)

 Extended I/O Tracing (iot experiment)
 Records each event in chronological order
 Collects Additional Information

• Function Parameters
• Function Return Value

 When to use extended I/O tracing?
• When you want to trace the exact order of events
• When you want to see the return values or bytes read or written.
• When you want to see the parameters of the IO call

 Performance Analysis with Open|SpeedShop 48

April 27, 2017

Running I/O Experiments

io/iop/iot experiment syntax and examples

Convenience script basic syntax:

ossio[p][t] “executable” [default | <list of I/O func>]
 Parameters

• I/O Function list to sample(default is all)
• creat, creat64, dup, dup2, lseek, lseek64, open, open64, pipe,

pread, pread64, pwrite, pwrite64, read, readv, write, writev

Examples:

ossio “mpirun –np 256 sweep3d.mpi”

ossiop “mpirun –np 256 sweep3d.mpi” read,readv,write

ossiot “mpirun –np 256 sweep3d.mpi” read,readv,write

Performance Analysis with Open|SpeedShop 49

April 27, 2017

I/O output via GUI

Performance Analysis with Open|SpeedShop 50

 I/O Default View for IOR application “io” experiment

Shows the aggregated time
spent in the I/O functions

traced during the application.

April 27, 2017

I/O output via GUI

Performance Analysis with Open|SpeedShop 51

 I/O Call Path View for IOR application “io” experiment

Shows the call paths to the

I/O functions traced and the
time spent along the paths.

April 27, 2017

I/O “iot” experiment output via GUI

Performance Analysis with Open|SpeedShop 52

 I/O Default View for IOR application “iot” experiment

Shows the min and max values

for bytes read or written.

April 27, 2017

I/O “iot”experiment output via CLI

 Show the call paths in the application run that allocated the largest number of bytes

 Using the min_bytes would show all the paths that allocated the minimum number of bytes.

 openss>>expview -vcalltrees,fullstack -m max_bytes

 Max_Bytes Call Stack Function (defining location)

 Read

 Written
 _start (IOR)
 > @ 562 in __libc_start_main (libmonitor.so.0.0.0: main.c,541)
 >> @ 258 in __libc_start_main (libc-2.12.so: libc-start.c,96)
 >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492)
 >>>> @ 153 in main (IOR: IOR.c,108)
 >>>>> @ 2013 in TestIoSys (IOR: IOR.c,1848)
 >>>>>> @ 2608 in WriteOrRead (IOR: IOR.c,2562)
 >>>>>>> @ 244 in IOR_Xfer_POSIX (IOR: aiori-POSIX.c,224)
 >>>>>>>> @ 321 in write (iot-collector-monitor-mrnet-mpi.so:

wrappers.c,239)

 262144 >>>>>>>>> @ 82 in write (libc-2.12.so: syscall-template.S,82)

 Performance Analysis with Open|SpeedShop 53

April 27, 2017

Performance with Open|SpeedShop

Parallel Performance Analysis including
analysis related to application
MPI and/or OpenMP activity

NASA Open|SpeedShop
Update/Training

April 27, 2017

How can O|SS help for parallel jobs?

 O|SS is designed to work on parallel jobs
 Support for threading and message passing
 Automatically tracks all ranks and threads during execution
 Records/stores performance info per process/rank/thread

 All experiments can be used on parallel jobs
 O|SS applies the experiment collector to all ranks or threads on

all nodes

 MPI specific tracing experiments
 Tracing of MPI function calls (individual, all, or a specific group)
 Four forms of MPI tracing experiments

 OpenMP specific experiment (ossomptp)
 Uses OMPT API to record task time, idleness, barrier, and wait

barrier per OpenMP parallel region
• Shows load balance for time
• expcompare time across all threads

Performance Analysis with Open|SpeedShop 55

April 27, 2017

Analysis of Parallel Codes

 Viewing data from parallel codes
 By default all values aggregated (summed) across all ranks
 Manually include/exclude individual ranks/processes/threads
 Ability to compare ranks/threads

 Additional analysis options
 Load Balance (min, max, average) across parallel executions

• Across ranks for hybrid OpenMP/MPI codes
• Focus on a single rank to see load balance across OpenMP threads

 Cluster analysis (finding outliers)
• Automatically creates groups of similar performing ranks or threads
• Available from the Stats Panel toolbar or context menu
• Note: can take a long time for large numbers of processors (current

version)

Performance Analysis with Open|SpeedShop 56

April 27, 2017

Integration with MPI

 O|SS has been tested with a variety of MPIs
 Including: Open MPI, MVAPICH[2], and MPICH (Intel, Cray), MPT

(SGI)

 Running O|SS experiments on MPI codes
 Just use the convenience script corresponding to the data you

want to gather and put the command you use to run your
application in quotes:
• osspcsamp “mpirun –np 32 sweep3d.mpi”
• ossio “srun –N 4 –n 16 sweep3d.mpi”
• osshwctime “mpirun –np 128 sweep3d.mpi”
• ossusertime “srun –N 8 –n 128 sweep3d.mpi”
• osshwc “mpirun –np 128 sweep3d.mpi”

Performance Analysis with Open|SpeedShop 57

April 27, 2017

MPI/OpenMP Specific Experiments

 MPI specific experiments
 Record MPI call invocations – 100 or so that O|SS traces
 MPI functions are profiled (ossmpip)

• Show call paths for each MPI unique call path
– However individual call information is not recorded.
– Less overhead than mpi, mpit.

 MPI functions are traced (ossmpi)
• Record call times and call paths for each event

 MPI functions are traced with details (ossmpit)
• Record call times, call paths and argument info for each event

 OpenMP specific experiment (ossomptp)
 Uses OMPT API to record task time, idleness, barrier, and wait

barrier per OpenMP parallel region
• Shows load balance for time
• Can use CLI command: expcompare to compare time across all threads

Performance Analysis with Open|SpeedShop 58

April 27, 2017

Running MPI Specific Experiments

mpi/mpip/mpit experiment syntax and examples

Convenience script basic syntax:

ossmpi[t][p] “mpi executable syntax” [default | <list MPI func> | mpi category]

 Parameters
• Default is all MPI Functions Open|SpeedShop traces
• MPI Function list to trace (comma separated)

– MPI_Send, MPI_Recv, ….

• mpi_category:
– "all”, "asynchronous_p2p”, "collective_com”, "datatypes”, "environment”,

"graphs_contexts_comms”, "persistent_com”, "process_topologies”,
"synchronous_p2p”

Examples:

ossmpi “srun –N 4 –n 32 smg2000 –n 50 50 50”

ossmpi “mpirun –np 4000 nbody” MPI_Send,MPI_Recv

Performance Analysis with Open|SpeedShop 59

April 27, 2017

Identifying Load Imbalance With O|SS

 Get overview of application
 Run a lightweight experiment to verify performance expectations

• pcsamp, usertime, hwc

 Use load balance view on pcsamp, usertime, hwc
 Look for performance values outside of norm

• Somewhat large difference for the min, max, average values
• If the MPI libraries are showing up in the load balance for pcsamp, then do

an MPI specific experiment

 Use load balance view on MPI experiment
 Look for performance values outside of norm

• Somewhat large difference for the min, max, average values

 Focus on the MPI functions to find potential problems

 Use load balance view on OpenMP experiment (omptp)
 Can also use expcompare across OpenMP threads

Performance Analysis with Open|SpeedShop 60

April 27, 2017

Load Balance View: NPB: LU

 Load Balance View based on functions (pcsamp)

Performance Analysis with Open|SpeedShop 61

MPI library showing up
high in the list

Max time in rank 255

With load balance view we are
looking for performance number out
of norm of what is expected.

Large differences between min, max
and/or average values.

April 27, 2017

Default Linked Object View: NPB: LU

 Default Aggregated View based on Linked Objects (libraries)

Performance Analysis with Open|SpeedShop 62

Linked Object View
(library view)

Select “Linked Objects”

Click D-icon

NOTE: MPI library
consuming large portion of
application run time

April 27, 2017

MPI Tracing Results: Default View
 Default Aggregated MPI Experiment View

Performance Analysis with Open|SpeedShop 63

Information Icon
Displays Experiment

Metadata

Aggregated Results

April 27, 2017

View Results: Show MPI Callstacks

Performance Analysis with Open|SpeedShop 64

Unique Call Paths to
MPI_Waitall and other MPI

functions

Unique Call Paths View:
Click C+ Icon

April 27, 2017

Using Cluster Analysis in O|SS

 Can use with pcsamp, usertime, hwc
 Will group like performing ranks/threads into groups
 Groups may identify outlier groups of ranks/threads
 Can examine the performance of a member of the outlier group
 Can compare that member with member of acceptable

performing group

 Can use with mpi, mpit
 Same functionality as above w.r.t. cluster analysis
 But, now focuses on the performance of individual

MPI_Functions.
 Key functions are MPI_Wait, MPI_WaitAll
 Can look at call paths to the key functions to analyze why they

are being called to find performance issues

Performance Analysis with Open|SpeedShop 65

April 27, 2017

Link. Obj. Cluster Analysis: NPB: LU

 Cluster Analysis View based on Linked Objects (libraries)

Performance Analysis with Open|SpeedShop 66

In Cluster Analysis results
Rank 255 showing up as an

outlier.

April 27, 2017

Performance with Open|SpeedShop

Comparing Performance Data

NASA Open|SpeedShop
Update/Training

April 27, 2017

Comparing Performance Data

 Key functionality for any performance analysis
 Absolute numbers often don’t help
 Need some kind of baseline / number to compare against

 Open|SpeedShop has support to line up profiles
 Perform multiple experiments and create multiple databases
 Script to load all experiments and create multiple columns

 Typical Example Comparisons
 Between experiments to study improvements/changes
 Between ranks/threads to understand differences/outliers
 Before/after optimization
 Different configurations or inputs

Performance Analysis with Open|SpeedShop 68

April 27, 2017

Comparing Performance Data in O|SS

 Convenience Script: osscompare
 Compares Open|SpeedShop up to 8 databases to each other
 Syntax: osscompare “db1.openss,db2.openss,…” [options]

• osscompare man page has more details

 Produces side-by-side comparison listing
 Metric option parameter:

• Compare based on: time, percent, a hwc counter, etc.

 Limit the number of lines by “rows=nn” option
 Specify the: viewtype=[functions|statements|linkedobjects]

• View granularity: function, statement, or library level.
• Function level is the default.
• If statements option is specified:

– Comparisons will be made by looking at the performance of each statement
in all the databases that are specified.

– Similar for libraries, if linkedobject is selected as the viewtype parameter.

 Options to write comparison output to comma separated list
(csv) or text files

 Performance Analysis with Open|SpeedShop 69

April 27, 2017

Comparison Report in O|SS

osscompare "smg2000-pcsamp.openss,smg2000-pcsamp-1.openss”

openss]: Legend: -c 2 represents smg2000-pcsamp.openss

[openss]: Legend: -c 4 represents smg2000-pcsamp-1.openss

-c 2, Exclusive CPU -c 4, Exclusive CPU Function (defining location)

 time in seconds. time in seconds.

 3.870000000 3.630000000 hypre_SMGResidual (smg2000: smg_residual.c,152)

 2.610000000 2.860000000 hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)

 2.030000000 0.150000000 opal_progress (libopen-pal.so.0.0.0)

 1.330000000 0.100000000 mca_btl_sm_component_progress (libmpi.so.0.0.2:
topo_unity_component.c,0)

 0.280000000 0.210000000 hypre_SemiInterp (smg2000: semi_interp.c,126)

 0.280000000 0.040000000 mca_pml_ob1_progress (libmpi.so.0.0.2:
topo_unity_component.c,0)

Performance Analysis with Open|SpeedShop 70

April 27, 2017

Performance with Open|SpeedShop

Section 2: Recently added Functionality/Experiments

NASA Open|SpeedShop
Update/Training

Performance Analysis with Open|SpeedShop

April 27, 2017

Outline
Section 1: Introduction to Open|SpeedShop tools

 How to use Open|SpeedShop to gather and display
 Overview of performance experiments

• Sampling Experiments and Tracing Experiments

 How to compare performance data for different application runs

Section 2: New Functionality/Experiments
 Memory (ossmem) experiment
 OpenMP augmentation
 OMPTP (ossomptp) experiment
 POSIX threads (osspthreads) experiment
 Lightweight experiments (ossiop, ossmpip)
 NVIDIA CUDA tracing experiment (osscuda)

Section 3: Roadmap / Future Plans

Supplemental Information
 Command Line Interface (CLI) tutorial and examples

72 Performance Analysis with Open|SpeedShop

April 27, 2017

Performance with Open|SpeedShop

Performance Analysis related to

application memory function activity

NASA Open|SpeedShop
Update/Training

Performance Analysis with Open|SpeedShop

April 27, 2017

O|SS Memory Experiment

 Supports sequential, mpi and threaded applications.
 No instrumentation needed in application.
 Traces system calls via wrappers

• malloc
• calloc
• realloc
• free
• memalign and posix_memalign

 Provides metrics for
 Timeline of events that set an new high-water mark.
 List of event allocations (with calling context) to leaks.
 Overview of all unique callpaths to traced memory calls that provides

max and min allocation and count of calls on this path.

 Example Usage
 ossmem "./lulesh2.0”
 ossmem “mpiexec_mpt -np 64 ./sweep3d.mpi“

 No GUI support at this time
 Support planned via the new GUI, pending funding.

74 Performance Analysis with Open|SpeedShop

April 27, 2017

O|SS Memory Experiment CLI commands

 expview -vunique
 Show times, call counts per path, min,max bytes allocation, total

allocation to all unique paths to memory calls that the mem collector
saw

 expview -vleaked
 Show function view of allocations that were not released while the

mem collector was active

 expview -vtrace,leaked
 Will show a timeline of any allocation calls that were not released

 expview -vfullstack,leaked
 Display a full callpath to each unique leaked allocation

 expview -v trace,highwater
 Is a timeline of mem calls that set a new high-water
 The last entry is the allocation call that the set the high-water for the

complete run
 Investigate the last calls in the timeline and look at allocations that

have the largest allocation size (size1,size2,etc) if your application is
consuming lots of system ram

75 Performance Analysis with Open|SpeedShop

April 27, 2017

O|SS Memory Experiment

 Shows the last 8 allocation events that set the high
water mark

openss>>expview -vtrace,highwater

 Start Time(d:h:m:s) Event Size Size Ptr Return Value New Call Stack Function (defining location)
 Ids Arg1 Arg2 Arg Highwater

*** trimmed all but the last 8 events of 61 ****
2016/11/10 09:56:50.824 11877:0 2080 0 0x7760e0 19758988 >>>>>>>__GI___libc_malloc (libc-
2.18.so)
2016/11/10 09:56:50.826 11877:0 1728000 0 0x11783d0 21484908 >>>>__GI___libc_malloc (libc-
2.18.so)
2016/11/10 09:56:50.827 11877:0 1728000 0 0x131e1e0 23212908 >>>>__GI___libc_malloc (libc-
2.18.so)
2016/11/10 09:56:50.827 11877:0 1728000 0 0x14c3ff0 24940908 >>>>__GI___libc_malloc (libc-
2.18.so)
2016/11/10 09:56:50.827 11877:0 2080 0 0x776a90 24942988 >>>>>>>__GI___libc_malloc (libc-
2.18.so)
2016/11/10 09:56:50.919 11877:0 1728000 0 0x1654030 25286604 >>>>__GI___libc_malloc (libc-
2.18.so)
2016/11/10 09:56:50.919 11877:0 1728000 0 0x17f9e40 27014604 >>>>__GI___libc_malloc (libc-
2.18.so)
2016/11/10 09:56:50.919 11877:0 2080 0 0xabc6a0 27016684 >>>>>>>__GI___libc_malloc (libc-
2.18.so)

76 Performance Analysis with Open|SpeedShop

April 27, 2017

O|SS Memory Experiment

 The next slide shows the default view of all unique memory calls
seen while the mem collector was active. This is an overview of the
memory activity. The default display is aggregated across all
processes and threads. Ability to view specific processes or threads.

 For all memory calls the following are displayed:
 The exclusive time and percent of exclusive time
 The number of times this memory function was called.
 The traced memory function name.

 For allocation calls (e.g. malloc) the follow:
 The max and min allocation size seen.
 The number of times the that max or min was seen are displayed.
 The total allocation size of all allocations.

77 Performance Analysis with Open|SpeedShop

April 27, 2017

O|SS Memory Experiment (Unique Calls)

78

openss>>expview -vunique

Exclusive % of Number Min Min Max Max Total Function (defining location)
 (ms) Total of Request Requested Request Requested Bytes
 Time Calls Count Bytes Count Bytes Requested

 0.024847 89.028629 1546 1 192 6 4096 6316416 __GI___libc_malloc (libc-2.18.so)
 0.002371 8.495467 5 __GI___libc_free (libc-2.18.so)
 0.000369 1.322154 1 1 40 1 40 40 __realloc (libc-2.18.so)
 0.000322 1.153750 3 1 368 1 368 1104 __calloc (libc-2.18.so)

NOTE: Number of Calls means the number of unique paths to the memory function call.
 To see the paths use the CLI command: expview –vunique,fullstack

Performance Analysis with Open|SpeedShop

April 27, 2017

O|SS Memory Experiment (Leaked Calls)

79

openss>>exprestore -f lulesh-mem-initial.openss
openss>>exprestore -f lulesh-mem-improved.openss
openss>>expcompare -vleaked -mtot_bytes -mcalls -x1 -x2

 -x 1, -x 1, -x 2, -x 2, Function (defining location)
 Total Number Total Number
 Bytes of Bytes of
Requested Calls Requested Calls
10599396 69 3332 8 __GI___libc_malloc (libc-2.17.so)
 72 1 72 1 __realloc (libc-2.17.so)

In this example the sequential OpenMP version of lulesh was run under ossmem.
The initial run detected 69 potential leaks of memory.
Examining the calltrees using the cli command "expview -vfullstack,leaked -mtot_bytes"
revealed that allocations from the Domain::Domain constructor where not later released in the
Domain::~Domain destructor. After adding appropriate delete's in the
destructor and rerunning ossmem, we observed a resolution of the leaks detected
in the Domain class. The remaining leaks where minor and from system libraries.

Using the exprestore command to load in the initial database and the database
from the second run, we can use the expcompare cli command to see the improvements.
Below, database -x1 shows the initial run and -x2 shows the results
from the run with the changes to address the leaks detected in the Domain class.

Performance Analysis with Open|SpeedShop

April 27, 2017

Demonstration: Memory Analysis

If timing permits:

Memory experiment related application exercise
 More information provided at the tutorial

Memory exercises can be found in these
directories:
 $HOME/exercises/matmul
 $HOME/exercises/lulesh2.0.3
 $HOME/exercises/lulesh2.0.3-fixed

 Look for the README file for instructions.

80 Performance Analysis with Open|SpeedShop

April 27, 2017

Performance with Open|SpeedShop

Performance Analysis related to
application OpenMP activity

NASA Open|SpeedShop
Update/Training

Performance Analysis with Open|SpeedShop

April 27, 2017

O|SS OpenMP augmentation

 O|SS augments the sampling experiments
 Applies the OMPT API callbacks for:

• openmp thread idleness (waiting or work outside a parallel region)
• openmp thread in barrier (within parallel region)
• openmp thread waiting at a barrier (within parallel region)

 to samples taken in the OpenMP library that otherwise would be
shown as in the Intel libiomp5 library
• __kmp_barrier
• __kmp_wait_sleep, etc.

 The user can see the aggregated sample time for idle,
barrier, and wait_barrier.

Performance Analysis with Open|SpeedShop 82

April 27, 2017

O|SS OpenMP augmentation

 With respect to the barrier symbols
 barrier and wait_barrier occur within a parallel region and

indicate time not doing work.
 idle means waiting for work outside the parallel region

 Essentially these metrics as used in the O|SS sampling
experiments to:
 Inform the user the time a thread is idle and the time spent at a

barrier (including waiting at a barrier).

 The usertime experiment can give some context to
where specific idle and barrier times are.

Performance Analysis with Open|SpeedShop 83

April 27, 2017

O|SS OpenMP augmentation

 Using the usertime experiment on an OpenMP application can
help to pinpoint where in the source the wait barrier time is
coming from. For example:

 openss>>expview
Exclusive Inclusive % of Function (defining location)
 CPU time CPU time Total
 in in Exclusive
 seconds. seconds. CPU Time
23.200000 23.200000 38.648263 OMPT_THREAD_IDLE (usertime-collector-monitor-mrnet.so: collector.c,122)

13.142857 13.142857 21.894336 MAIN__.omp_fn.2 (stress_omp: stress_omp.f,179)
12.885714 12.885714 21.465969 MAIN__.omp_fn.5 (stress_omp: stress_omp.f,227)
 4.742857 4.742857 7.901000 OMPT_THREAD_WAIT_BARRIER (usertime-collector-monitor-mrnet.so: collector.c,150)

 2.000000 11.771428 3.331747 MAIN__ (stress_omp: stress_omp.f,1)
 1.257143 1.257143 2.094241 __kernel_cosf (libm-2.12.so: k_cosf.c,45)
 1.085714 1.085714 1.808663 __ieee754_rem_pio2f (libm-2.12.so: e_rem_pio2f.c,108)

Performance Analysis with Open|SpeedShop 84

April 27, 2017

O|SS OpenMP augmentation

 Here we see the call path that points to the source lines that
result in the thread waiting in the barrier.

 openss>>expview -vcalltrees,fullstack -f OMPT_THREAD_WAIT_BARRIER usertime1

Exclusive Inclusive % of Call Stack Function (defining location)
 CPU time CPU time Total
 in in Exclusive
 seconds. seconds. CPU Time
 _start (stress_omp)
 > @ 556 in __libc_start_main (libmonitor.so.0.0.0: main.c,541)
 >>__libc_start_main (libc-2.12.so)
 >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492)
 >>>>main (stress_omp)
 >>>>> @ 227 in MAIN__ (stress_omp: stress_omp.f,1)
 >>>>>> @ 557 in __kmp_api_GOMP_parallel_end_10_alias (libiomp5.so: kmp_gsupport.c,490)

 >>>>>>> @ 2395 in __kmp_join_call (libiomp5.so: kmp_runtime.c,2325)
 >>>>>>>> @ 7114 in __kmp_internal_join (libiomp5.so: kmp_runtime.c,7093)
 >>>>>>>>> @ 1458 in __kmp_join_barrier(int) (libiomp5.so: kmp_barrier.cpp,1371)

 1.742857 1.742857 2.903379 >>>>>>>>>> @ 150 in OMPT_THREAD_WAIT_BARRIER (usertime-collector-monitor-mrnet.so: collector.c,150)

Performance Analysis with Open|SpeedShop 85

April 27, 2017

Running the omptp experiment

O|SS OpenMP specific experiment information / example

Convenience script basic syntax:

ossomptp “executable”

Examples:

ossomptp “./openmp_stress < stress.input”

ossomptp “mpirun –np 16 ./lulesh2.0”

Performance Analysis with Open|SpeedShop 86

April 27, 2017

Using OMPTP experiment in O|SS
The following three CLI examples show the most important ways to
view OMPTP experiment data.

 No GUI support at this time. Support planned via the new GUI,
pending funding.

Default view shows the timing of the parallel regions, idle, barrier,
and wait barrier as an aggregate across all threads
openss -cli -f ./matmult-omptp-0.openss
openss>>expview

Exclusive Inclusive % of Function (defining location)
 times in times in Total
 seconds. seconds. Exclusive
 CPU Time
44.638794 45.255843 93.499987 compute._omp_fn.1 (matmult: matmult.c,68)
 1.744841 1.775104 3.654726 compute_interchange._omp_fn.3 (matmult: matmult.c,118)
 0.701720 0.701726 1.469817 compute_triangular._omp_fn.2 (matmult: matmult.c,95)
 0.652438 0.652438 1.366591 IDLE (omptp-collector-monitor-mrnet.so: collector.c,573)
 0.004206 0.009359 0.008810 initialize._omp_fn.0 (matmult: matmult.c,32)
 0.000032 0.000032 0.000068 BARRIER (omptp-collector-monitor-mrnet.so: collector.c,587)
 0.000000 0.000000 0.000001 WAIT_BARRIER (omptp-collector-monitor-mrnet.so: collector.c,602)

87 Performance Analysis with Open|SpeedShop

April 27, 2017

Using OMPTP experiment in O|SS

This example shows the comparison of exclusive time across all
threads for the parallel regions, idle, barrier, and wait barrier

openss>>expcompare -mtime -t0:4

 -t 0, -t 2, -t 3, -t 4, Function (defining location)
Exclusive Exclusive Exclusive Exclusive
 times in times in times in times in
 seconds. seconds. seconds. seconds.
11.313892 11.081346 11.313889 10.929668 compute._omp_fn.1 (matmult: matmult.c,68)
 0.443713 0.430553 0.429635 0.440940 compute_interchange._omp_fn.3 (matmult: matmult.c,118)

 0.253632 0.213238 0.164875 0.069975 compute_triangular._omp_fn.2 (matmult: matmult.c,95)
 0.001047 0.001100 0.001095 0.000964 initialize._omp_fn.0 (matmult: matmult.c,32)
 0.000008 0.000008 0.000006 0.000010 BARRIER (omptp-collector-monitor-mrnet.so: collector.c,587)

 0.000000 0.000000 0.000000 0.000000 WAIT_BARRIER (omptp-collector-monitor-mrnet.so: collector.c,602)
 0.000000 0.247592 0.015956 0.388890 IDLE (omptp-collector-monitor-mrnet.so: collector.c,573)

88 Performance Analysis with Open|SpeedShop

April 27, 2017

Using OMPTP experiment in O|SS

This example shows the load balance of time across all threads for the
parallel regions, idle, barrier, and wait barrier

openss>>expview -mloadbalance

 Max OpenMP Min OpenMP Average Function (defining location)
 Exclusive ThreadId Exclusive ThreadId Exclusive
Time Across of Max Time Across of Min Time Across
 OpenMP OpenMP
ThreadIds(s) ThreadIds(s) ThreadIds(s)

 11.313892 0 10.929668 4 11.159699 compute._omp_fn.1 (matmult: matmult.c,68)
 0.443713 0 0.429635 3 0.436210 compute_interchange._omp_fn.3 (matmult: matmult.c,118)

 0.388890 4 0.015956 3 0.217479 IDLE (omptp-collector-monitor-mrnet.so:
collector.c,573)

 0.253632 0 0.069975 4 0.175430 compute_triangular._omp_fn.2 (matmult: matmult.c,95)

 0.001100 2 0.000964 4 0.001052 initialize._omp_fn.0 (matmult: matmult.c,32)
 0.000010 4 0.000006 3 0.000008 BARRIER (omptp-collector-monitor-mrnet.so:
collector.c,587)
 0.000000 0 0.000000 0 0.000000 WAIT_BARRIER (omptp-collector-monitor-mrnet.so:
collector.c,602)

89 Performance Analysis with Open|SpeedShop

April 27, 2017

Demonstration: OpenMP specific profiling

If timing permits:

OpenMP specific experiment application exercise

OpenMP profiling exercises can be found in these
directories:
 $HOME/exercises/matmul
 $HOME/exercises/hybrid_lulesh2.0.3
 $HOME/exercises/lulesh2.0.3

90 Performance Analysis with Open|SpeedShop

April 27, 2017

Performance with Open|SpeedShop

Performance Analysis related to
application POSIX thread activity

NASA Open|SpeedShop
Update/Training

April 27, 2017

OSS/CBTF pthreads experiment

pthreads experiment was created using the CBTF
infrastructure

 Gives opportunity to filter the POSIX thread performance
information to reduce and mine the important/worthwhile
information while the data is transferring to the client tool
 Discussion Topic: What is that worthwhile information?
 Ideas:

• Report statistics about pthread wait
• Report OMP blocking times
• Attribute information to proper threads
• Thread numbering improvements

– Use a shorter alias number for the long POSIX pthread numbers
• Report synchronization overhead mapped to proper thread

 Slides that follow show what the tool provides currently

Performance Analysis with Open|SpeedShop 92

April 27, 2017

Running the pthreads experiment

O|SS pthreads experiment information and example

Convenience script basic syntax:

osspthreads “executable” [default | <list of POSIX func>]
 Parameters

• POSIX thread function list to sample(default is all)
• pthread_create, pthread_mutex_init, pthread_mutex_destroy,

pthread_mutex_lock, pthread_mutex_trylock, pthread_mutex_unlock,
pthread_cond_init, pthread_cond_destroy, pthread_cond_signal,
pthread_cond_broadcast, pthread_cond_wait, pthread_cond_timedwait

Examples:

osspthreads “aprun -n 64 -d 8 ./mpithreads_both”

osspthreads “mpirun –np 256 sweep3d.mpi” pthread_mutex_lock

Performance Analysis with Open|SpeedShop 93

April 27, 2017

Running the pthreads experiment

OSS/CBTF pthreads experiment default GUI view

Performance Analysis with Open|SpeedShop 94

Aggregated Time and
Number of calls for the
POSIX thread functions

April 27, 2017

Running the pthreads experiment

OSS/CBTF pthreads experiment callpath GUI view

Performance Analysis with Open|SpeedShop 95

Unique Call Paths to
POSIX thread functions

April 27, 2017

Running the pthreads experiment

OSS/CBTF pthreads experiment loadbalance GUI view

Performance Analysis with Open|SpeedShop 96

Max, Min, Ave across all
threads for all traced

POSIX thread functions

April 27, 2017

Running the pthreads experiment

OSS/CBTF pthreads experiment butterfly GUI view

Performance Analysis with Open|SpeedShop 97

Caller, Pivot Function, and
Callee information from

Butterfly View

April 27, 2017

Performance with Open|SpeedShop

Lightweight I/O and MPI

NASA Open|SpeedShop
Update/Training

April 27, 2017

OSS/CBTF iop and mpip experiment
Lightweight Experiments

 iop – Gather I/O information like the io experiment, but do
not save the information about each individual I/O call.

 mpip - Gather MPI information like the io experiment, but do
not save the information about each individual MPI call.

 Experiments still give a good overview of I/O and MPI, but
reduce the sizes of the Open|SpeedShop database created.

 Size comparison:
 668K smg2000-mpip-0.openss

• ossmpip "mpirun -np 4 ./smg2000 -n 10 10 10"
 5.0M smg2000-mpi-0.openss

• ossmpi "mpirun -np 4 ./smg2000 -n 10 10 10"
 12M smg2000-mpit-0.openss

• ossmpit "mpirun -np 4 ./smg2000 -n 10 10 10"
 60K smg2000-mpit-1.openss

• Gathered data for only the MPI collective mpi category.
• ossmpit "mpirun -np 4 ./smg2000 -n 10 10 10" collective_com

Performance Analysis with Open|SpeedShop 99

April 27, 2017

Performance with Open|SpeedShop

NVIDIA CUDA Performance Analysis

NASA Open|SpeedShop
Update/Training

April 27, 2017

OSS/CBTF cuda experiment

What performance info does O|SS provide?

 For GPGPU O|SS reports information to help understand:
 Time spent in the GPU device
 Cost and size of data transferred to/from the GPU
 Balance of CPU versus GPU utilization
 Transfer of data between the host and device memory versus the execution of

computational kernels
 Performance of the internal computational kernel code running on the GPU

device

 O|SS is able to monitor CUDA scientific libraries because it
operates on application binaries.

 Support for CUDA based applications is provided by tracing actual
CUDA events

 OpenACC support is conditional on the CUDA RT.

Performance Analysis with Open|SpeedShop 101

April 27, 2017

Open|SpeedShop: osscuda experiment

Usage:

osscuda "executable" [extra_args]

Where "executable" is defined as the command that you normally
use to execute your program but placed in quotes.

Example: osscuda "mpiexec_mpt -np 8 ./Triad" [extra_args]

The optional "extra_args" are defined as follows:

The following arguments control the periodic sampling of both CPU and GPU
hardware performance counters performed by the cuda collector:

 "all" - Periodically sample all instructions.
 "branches" - Periodically sample branch instructions.
 "integer" - Periodically sample integer instructions.
 "single" - Periodically sample single-precision float instructions.
 "double" - Periodically sample double-precision float instructions.
 "memory" - Periodically sample load/store instructions.

 "low" - Periodically sample the requested instructions every 100 ms.
 "default" - Periodically sample the requested instructions every 10 ms.
 "high" - Periodically sample the requested instructions every 1 ms.

Performance Analysis With Open|SpeedShop: NASA Hands-On Tutorial 102

April 27, 2017

CUDA GUI View: Default CUDA view

Performance Analysis With Open|SpeedShop: NASA Hands-On Tutorial 103

Note: The left pane shows the executable and the nodes it ran on. In future, will effect views.
 Internal GPU activity is shown in ccn0001 (GPU All) graphic (shaded area)
 Red boxes indicate data transfers, Green boxes indication GPU kernel executions
 Source panel displays source for metrics clicked on in the Metric pane.

April 27, 2017

CUDA GUI View: All Events Trace

Performance Analysis With Open|SpeedShop: NASA Hands-On Tutorial 104

Note: This is the “All Events” Details View which shows the chronological list of CUDA kernel
executions and data transfers. Here the Experiment Panel (the left side panel) has been
completely collapsed to maximize the width of the right-side panels.

April 27, 2017

Outline

Section 1: Introduction to Open|SpeedShop tools
 How to use Open|SpeedShop to gather and display
 Overview of performance experiments

• Sampling Experiments and Tracing Experiments

 How to compare performance data for different application runs

Section 2: New Functionality/Experiments
 Memory (ossmem) experiment
 OpenMP augmentation
 OMPTP (ossomptp) experiment
 POSIX threads (osspthreads) experiment
 Lightweight experiments (ossiop, ossmpip)

Section 3: Roadmap / Future Plans

Supplemental Information
 Command Line Interface (CLI) tutorial and examples

105 Performance Analysis with Open|SpeedShop

April 27, 2017

Performance with Open|SpeedShop

Section 3
Road Map / Future Work

106 Performance Analysis with Open|SpeedShop

NASA Open|SpeedShop
Update/Training

April 27, 2017

What are the recent changes to O|SS

Component Based Tool Framework (CBTF)
 New version of O|SS uses tree based network (MRNet)

• Transfer data over the network, does not write files like the
offline version

• Allows the possibility of data reduction (in parallel) as the data
is streamed up the tree

 Six new experiments implemented in this version
• Lightweight I/O profiling (iop)
• Lightweight MPI profiling (mpip)
• Threading experiments (pthreads)
• Memory usage analysis (mem)
• GPU/Accelerator support (cuda)
• OpenMP specific support (omptp)

Performance Analysis with Open|SpeedShop 107

April 27, 2017

What are the recent changes to O|SS

 New features and improvements in O|SS
 OpenMP idle/wait time augmentation to sampling experiments
 Spack build support for clusters – not Cray yet
 Conversion to cmake builds for O|SS, CBTF from GNU auto

tools.
 Support for offline like capability in the O|SS CBTF version

• Use osspcsamp --offline “how you run your application normally”
• Same for other experiments: ossusertime, osshwc, etc..

 Fix in Qt3 GUI for better support of function related views when
function name is STL or C++ namespace based.

 Major improvements to NVIDIA CUDA GPU experiment
• Initial new GUI creation
• Improved performance data collection
• Improved command line interface (CLI) views

 ARM, Power8 support
 Tracing of MPI asynchronous non-blocking functions in the MPI

experiments.

Performance Analysis with Open|SpeedShop 108

April 27, 2017

Open|SpeedShop and CBTF

New functionality being worked on now or planned

 Creation of an Overview experiment
 Give users an overview of the performance of their application
 Include information in a lightweight manner
 Include MPI, I/O, hardware counters, PC sampling, other
 May not create a database? Still in the planning stages
 Task for Tri-labs listed in development contract

 Continue improving Intel MIC (KNL) support

 Filtering (data reduction, analysis) in the MRNet communication nodes
 Faster views as data is mined in parallel

 Investigate performance analysis by phases and iteration of the phase,
perhaps using LLNL caliper project.

 Spack based OpenSpeedShop builds for Cray platform

 In discussion: replacement/upgrade for mpiotf experiment to write
OTF-2 instead of OTF. OTF == Open Trace Format

Performance Analysis with Open|SpeedShop 110

April 27, 2017

NASA Open|SpeedShop Availability
Pleaides platform:

 module use /home4/jgalarow/privatemodules

 Module names:
 module load openspeedshop (defaults to mpt)
 module load openspeedshop.mpt
 module load openspeedshop.intelmpi
 module load openspeedshop.mvapich2
 module load openspeedshop.openmpi

KNL cluster platform:

 module use /u/jgalarow/privatemodules

 Module names:
 module load openspeedshop (defaults to mpt)
 module load openspeedshop.mpt
 module load openspeedshop.intelmpi

For mpi* experiments use the module file that corresponds
to the MPI implementation your application was built with.

Performance Analysis with Open|SpeedShop 111

April 27, 2017

Availability

Current version: 2.3.1 has been released

Open|SpeedShop Website
 http://www.openspeedshop.org/

Open|SpeedShop help and bug reporting
 Direct email: oss-contact@openspeedshop.org
 Forum/Group: oss-questions@openspeedshop.org

Feedback
 Bug tracking available from website
 Feel free to contact presenters directly
 Support contracts and onsite training available

Performance Analysis with Open|SpeedShop 112

http://www.openspeedshop.org/
mailto:oss-contact@openspeedshop.org
mailto:oss-contact@openspeedshop.org
mailto:oss-contact@openspeedshop.org
mailto:oss-questions@openspeedshop.org
mailto:oss-questions@openspeedshop.org
mailto:oss-questions@openspeedshop.org

April 27, 2017

Open|SpeedShop Documentation

Build and Installation Instructions
 http://www.openspeedshop.org/documentation

• Look for: Open|SpeedShop Version 2.3 Build/Install Guide

Open|SpeedShop User Guide Documentation
 http://www.openspeedshop.org/documentation

• Look for Open|SpeedShop Version 2.3 Users Guide

Man pages: OpenSpeedShop, osspcsamp, ossmpi,
…

Quick start guide downloadable from web site
 http://www.openspeedshop.org
 Click on “Download Quick Start Guide” button

Performance Analysis with Open|SpeedShop 113

http://www.openspeedshop.org/documentation
http://www.openspeedshop.org/documentation
http://www.openspeedshop.org

April 27, 2017

Outline

Section 1: Introduction to Open|SpeedShop tools
 How to use Open|SpeedShop to gather and display
 Overview of performance experiments

• Sampling Experiments and Tracing Experiments

 How to compare performance data for different application runs

Section 2: New Functionality/Experiments
 Memory (ossmem) experiment
 OpenMP augmentation
 OMPTP (ossomptp) experiment
 POSIX threads (osspthreads) experiment
 Lightweight experiments (ossiop, ossmpip)

Section 3: Roadmap / Future Plans

Supplemental Information
 Command Line Interface (CLI) tutorial and examples

114 Performance Analysis with Open|SpeedShop

April 27, 2017

Performance with Open|SpeedShop

Supplemental: 1
Command Line Interface Usage

115 Performance Analysis with Open|SpeedShop

NASA Open|SpeedShop
Update/Training

April 27, 2017

Command Line Interface (CLI) Usage

 Command Line Interface Features
 “gdb” like tool for performance data creation and viewing
 Same functional capabilities the graphical user interface (GUI)

• Exception: GUI can focus on the source line corresponding to statistics

 List metadata about your application and the OSS experiment
 Create experiments and run them
 Launch the GUI from the CLI via the “opengui” command
 View performance data from a database file

• openss –cli –f <database filename> to launch
• expview – key command with many options
• list – list many items such as source, object files, metrics to view
• expcompare – Compare ranks, threads, processes to each other, more…
• cviewcluster – Creates groups of like performing entities to outliers.
• cview – Output the columns of data representing groups created by

cviewcluster.
• cviewinfo – Output what ranks, threads, etc., are in each cview group

116 Performance Analysis with Open|SpeedShop

April 27, 2017

Command Line Interface (CLI) Usage

 Command Line Interface Features (additional)
 Format the performance information view to csv

• expview -F csv

 Selectively only view, compare, analyze by rank, thread, process
• -r <rank number> or rank list or rank ranges
• -t <thread number> or thread list or thread ranges
• -p <process number> or process list or process ranges

 Selectively only view, compare, analyze by specific metrics
• -m <metric name> or list of metrics
• Example metrics for sampling: percent, time
• Example metrics for tracing: time, count, percent

 Selectively only view by specific view type options
• -v <view type> or list of view types
• Example view types: functions, statements, loops, linked objects
• Example metrics for tracing: time, count, percent

117 Performance Analysis with Open|SpeedShop

April 27, 2017

Command Line Interface (CLI) Usage

Command Line Interface Examples

 openss –cli –f <database file name>

 Commands to get started
 expstatus

• Gives the metadata information about the experiment

 expview
• Displays the default view for the experiment
• Use expview <experiment type>nn to see only nn lines of output

– expview pcsamp20 shows only the top 20 time taking functions

• -v functions : displays data based on function level granularity
• -v statements : displays data based on statement level granularity
• -v linkedobjects : displays data based on library level granularity
• -v loops : displays data based on loop level granularity
• -v calltrees : displays call paths combining like paths
• -v calltrees,fullstack : displays all unique call paths individually
• -m loadbalance : displays the min, max, average values across ranks, …

 118 Performance Analysis with Open|SpeedShop

April 27, 2017

Command Line Interface (CLI) Usage

Command Line Interface Examples

 Openss -cli -f <database file name>

 Commands to get started
 expview (continued from previous page)

• -v trace : for tracing experiments, display chronological list of events
• -m <metric> : only display the metric(s) provided via the –m option

– Where metric can be: time, percent, a hardware counter, (see list -v metrics)

• -r <rank or rank list> : only display data for that rank or ranks
• -t < thread id or list of thread ids> : only display data for that thread (s)
• -h < host id or list of host ids> : only display data for that host or hosts
• -F csv : display performance data in a comma separated list

 expcompare : compare data within the same experiment
• -r 1 -r 2 –m time : compare rank 1 to rank 2 for metric equal time
• -h host1 –h host2 : compare host 1 to host 2 for the default metric

119 Performance Analysis with Open|SpeedShop

April 27, 2017

Command Line Interface (CLI) Usage

Command Line Interface Examples

 openss –cli –f <database file name>

 Commands to get started
 list

• -v metrics : display the data types (metric) that can be displayed via –m
• -v src : display source files associated with experiment
• -v obj : display object files associated with experiment
• -v ranks : display ranks associated with experiment
• -v hosts : display machines associated with experiment
• -v exp : display the experiment numbers that are currently loaded
• -v savedviews : display the commands that are cached in the database

120 Performance Analysis with Open|SpeedShop

April 27, 2017

Viewing hwcsamp data in CLI

openss -cli -f smg2000-hwcsamp-1.openss

View the default report for this hwcsamp experiment

openss>>[openss]: The restored experiment identifier is: -x 1

openss>>expview

 Exclusive CPU time % of CPU Time PAPI_TOT_CYC PAPI_FP_OPS Function (defining location)

 in seconds.

 3.920000000 44.697833523 11772604888 1198486900 hypre_SMGResidual (smg2000:
smg_residual.c,152)

 2.510000000 28.620296465 7478131309 812850606 hypre_CyclicReduction (smg2000:
cyclic_reduction.c,757)

 0.310000000 3.534777651 915610917 48863259 opal_progress (libopen-pal.so.0.0.0)

 0.300000000 3.420752566 910260309 100529525 hypre_SemiRestrict (smg2000:
semi_restrict.c,125)

 0.290000000 3.306727480 874155835 48509938 mca_btl_sm_component_progress
(libmpi.so.0.0.2)

Performance Analysis with Open|SpeedShop 121

April 27, 2017

Viewing hwcsamp data in CLI
View the linked object (library) view for this Hardware Counter Sampling experiment

openss>>expview -v linkedobjects

 Exclusive CPU time % of CPU Time PAPI_TOT_CYC PAPI_FP_OPS LinkedObject

 in seconds.

 7.710000000 87.315968290 22748513124 2396367480 smg2000

 0.610000000 6.908267271 1789631493 126423208 libmpi.so.0.0.2

 0.310000000 3.510758777 915610917 48863259 libopen-pal.so.0.0.0

 0.200000000 2.265005663 521249939 46127342 libc-2.10.2.so

 8.830000000 100.000000000 25975005473 2617781289 Report Summary

openss>>

Performance Analysis with Open|SpeedShop 122

April 27, 2017

Viewing I/O (iot) data in CLI
View the default I/O report for this I/O experiment

openss>> openss -cli -f sweep3d.mpi-iot.openss

openss>>[openss]: The restored experiment identifier is: -x 1

openss>>expview

I/O Call % of Number Function (defining location)

Time(ms) Total of

 Time Calls

1.241909 90.077151 36 __write (libpthread-2.17.so)

0.076653 5.559734 2 close (libpthread-2.17.so)

0.035452 2.571376 2 read (libpthread-2.17.so)

0.024703 1.791738 2 open64 (libpthread-2.17.so)

View the default trace (chronological list of I/O functions calls) for this I/O experiment

openss>>expview -v trace

 Start Time I/O Call % of Function File/Path Name Event Call Stack Function (defining location)

 Time(ms) Total Dependent Identifier(s)

 Time Return

 Value

2014/08/17 09:25:44.368 0.012356 0.896196 13 input 0:140166697882752 >>>>>>>>>>open64 (libpthread-2.17.so)

2014/08/17 09:25:44.368 0.027694 2.008679 input 0:140166697882752 >>>>>>>>>>>>>read (libpthread-2.17.so)

2014/08/17 09:25:44.377 0.053832 3.904500 0 input 0:140166697882752 >>>>>>>>>close (libpthread-2.17.so)

2014/08/17 09:25:44.378 0.012347 0.895543 13 input 0:140166697882752 >>>>>>>>>>open64 (libpthread-2.17.so)

2014/08/17 09:25:44.378 0.007758 0.562697 53 input 0:140166697882752 >>>>>>>>>>>>>read (libpthread-2.17.so)

2014/08/17 09:25:44.378 0.022821 1.655235 0 input 0:140166697882752 >>>>>>>>>close (libpthread-2.17.so)

2014/08/17 09:25:44.378 0.037219 2.699539 62 /dev/pts/1 0:140166697882752 >>>>>>>>>>__write (libpthread-2.17.so)

Performance Analysis with Open|SpeedShop 123

April 27, 2017

Viewing I/O (iot) data in CLI

View the list of metrics (types of performance information) for this I/O experiment

openss>>list -v metrics

iot::average

iot::count

iot::exclusive_details

iot::exclusive_times

iot::inclusive_details

iot::inclusive_times

iot::max

iot::min

iot::nsysarg

iot::pathname

iot::retval

iot::stddev

iot::syscallno

iot::threadAverage

iot::threadMax

iot::threadMin

iot::time

Performance Analysis with Open|SpeedShop 124

April 27, 2017

Viewing I/O (iot) data in CLI

View in chronological trace order: start_time, time, the rank:thread event occurred in.

openss>>expview -m start_time,time,id -vtrace
 Start Time(d:h:m:s) Exclusive Event Call Stack Function (defining location)

 I/O Call Identifier(s)

 Time(ms)

2014/08/17 09:25:44.368 0.012356 0:140166697882752 >>>>>>>>>>open64 (libpthread-2.17.so)

2014/08/17 09:25:44.368 0.027694 0:140166697882752 >>>>>>>>>>>>>read (libpthread-2.17.so)

2014/08/17 09:25:44.377 0.053832 0:140166697882752 >>>>>>>>>close (libpthread-2.17.so)

014/08/17 09:25:44.378 0.012347 0:140166697882752 >>>>>>>>>>open64 (libpthread-2.17.so)

2014/08/17 09:25:44.378 0.007758 0:140166697882752 >>>>>>>>>>>>>read (libpthread-2.17.so)

2014/08/17 09:25:44.378 0.022821 0:140166697882752 >>>>>>>>>close (libpthread-2.17.so)

2014/08/17 09:25:44.378 0.037219 0:140166697882752 >>>>>>>>>>__write (libpthread-2.17.so)

2014/08/17 09:25:44.378 0.018545 0:140166697882752 >>>>>>>>>>__write (libpthread-2.17.so)

2014/08/17 09:25:44.378 0.019837 0:140166697882752 >>>>>>>>>>__write (libpthread-2.17.so)

2014/08/17 09:25:44.379 0.035047 0:140166697882752 >>>>>>>>>>__write (libpthread-2.17.so)

…

…

Performance Analysis with Open|SpeedShop 125

April 27, 2017

Viewing I/O (iot) data in CLI
View the load balance (max, min, and average values) across all ranks, threads, or processes.

openss>>expview -m loadbalance

 Max I/O Rank Min I/O Rank Average Function (defining location)

 Call of Call of I/O Call

 Time Max Time Min Time

 Across Across Across

Ranks(ms) Ranks(ms) Ranks(ms)

1.241909 0 1.241909 0 1.241909 __write (libpthread-2.17.so)

0.076653 0 0.076653 0 0.076653 close (libpthread-2.17.so)

0.035452 0 0.035452 0 0.035452 read (libpthread-2.17.so)

0.024703 0 0.024703 0 0.024703 open64 (libpthread-2.17.so)

View data for only rank nn, in this case rank 0

openss>>expview -r 0

I/O Call % of Number Function (defining location)

Time(ms) Total of

 Time Calls

1.241909 90.077151 36 __write (libpthread-2.17.so)

0.076653 5.559734 2 close (libpthread-2.17.so)

0.035452 2.571376 2 read (libpthread-2.17.so)

0.024703 1.791738 2 open64 (libpthread-2.17.so)

Performance Analysis with Open|SpeedShop 126

April 27, 2017

Viewing I/O (iot) data in CLI

View the top time taking call tree in this application run. iot1 indicates see only one callstack. iot<number> shows
“number” of calltrees.

openss>>expview -v calltrees,fullstack iot1

I/O Call % of Number Call Stack Function (defining location)

Time(ms) Total of

 Time Calls

 _start (sweep3d.mpi)

 > @ 562 in __libc_start_main (libmonitor.so.0.0.0: main.c,541)

 >>__libc_start_main (libc-2.17.so)

 >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492)

 >>>>0x4026a2

 >>>>> @ 185 in MAIN__ (sweep3d.mpi: driver.f,1)

 >>>>>> @ 41 in inner_auto_ (sweep3d.mpi: inner_auto.f,2)

 >>>>>>> @ 128 in inner_ (sweep3d.mpi: inner.f,2)

 >>>>>>>>_gfortran_st_write_done (libgfortran.so.3.0.0)

 >>>>>>>>>0x30fb8db56f

 >>>>>>>>>>0x30fb8e65af

 >>>>>>>>>>>0x30fb8df8c8

0.871600 63.218195 12 >>>>>>>>>>>>__write (libpthread-2.17.so)

Performance Analysis with Open|SpeedShop 127

April 27, 2017

Command Line Interface (CLI) Usage
Open|SpeedShop CLI output into csv form for spreadsheet
use.
 Create an experiment database

EXE=./a.out
export
OPENSS_HWCSAMP_EVENTS="PAPI_VEC_DP,FP_COMP_OPS_EXE:SSE_FP_PACKED_
DOUBLE"
osshwcsamp "/usr/bin/srun -N 1 -n 1 $EXE ”

 Open the database file and use expview –F csv to create a csv file
openss –cli –f a.out-hwcsamp.openss
>expview -F csv > mydata.csv

 Create csv file using a script method
echo "exprestore -f a.out-hwcsamp.openss" > ./cmd_file
echo "expview -F csv > mydata.csv " >> ./cmd_file
echo "exit" >> ./cmd_file

Run openss utility to output CSV rows.

openss -batch < ./cmd_file

128 Performance Analysis with Open|SpeedShop

April 27, 2017

GUI export of data to csv form
Getting Open|SpeedShop output into csv form for spreadsheet use.

openss –f stream.x-hwcsamp-1.openss

Go to Stats Panel Menu

Select the "Report Export Data (csv)" option

In the Dialog Box provide a meaningful name such as stream.x-hwcsamp-1.csv

File will be saved to a file you specified above

129 Performance Analysis with Open|SpeedShop

April 27, 2017

Command Line Interface (CLI) Usage

Storing csv information into spreadsheet

 Open your spreadsheet.

 Either
 Select open from pulldown menu
 import stream.x-hwcsamp-1.csv
 Cut and paste the contents of stream.x-hwcsamp-1.csv

into the spreadsheet

 Use "Data" operation and then "Text to columns",

 Select "comma" to separate the columns.

 Save the spreadsheet file

130 Performance Analysis with Open|SpeedShop

April 27, 2017

Command Line Interface (CLI) Usage

Plotting the performance info from the
spreadsheet (Libre office instructions)

 Open your spreadsheet.

 Select Insert, then choose Chart

 Choose a chart type

 Choose data range choices (data series in columns)

 Choose data series (nothing to do here)

 Chart is created. Views can be changed.

131 Performance Analysis with Open|SpeedShop

April 27, 2017

Performance with Open|SpeedShop

Supplemental: 2
Preferences

132 Performance Analysis with Open|SpeedShop

NASA Open|SpeedShop
Update/Training

April 27, 2017

Changing Preferences in O|SS

Performance Analysis with Open|SpeedShop 133

Selecting File->Preferences to customize O|SS

Select Preferences from
the File menu

April 27, 2017

Changing Preferences in O|SS

Performance Analysis with Open|SpeedShop 134

Enabling the new Command Line Interface (CLI)
save/reuse views feature. Looking for friendly user
evaluation.

Click here to enable the
save and reuse (cache)

 CLI views

